Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

Vicinity-Based Abstraction: VA-DGCNN Architecture for Noisy 3D Indoor Object Classification

Authors: Jakub Walczak; Adam Wojciechowski; Patryk Najgebauer; Rafal Scherer;

Vicinity-Based Abstraction: VA-DGCNN Architecture for Noisy 3D Indoor Object Classification

Abstract

One of the outstanding benchmark architectures for point cloud processing with graph-based structures is Dynamic Graph Convolutional Neural Network (DGCNN). Though it works well for classification of nearly perfectly described digital models, it leaves much to be desired for real-life cases burdened with noise and 3D scanning shadows. Therefore we propose a novel, feature-preserving vicinity abstraction (VA) layer for the EdgeConv module. This allowed for enriching the global feature vector with the local context provided by the k-NN graph. Rather than processing a point together with its neighbours at once, local information is aggregated before further processing, unlike in the original DGCNN. Such an approach enabled a model to learn accumulated information instead of max-pooling features from local context at the end of each EdgeConv module. Thanks to this strategy mean- and overall classification accuracy increased by 9.4pp and 4.4pp, respectively. Furthermore, thanks to processing aggregated information rather than the entire vicinity, the new VA-DGCNN model converges significantly faster than the original DGCNN.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!