Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DIGITAL.CSIC
Article . 2013 . Peer-reviewed
Data sources: DIGITAL.CSIC
Journal of Cell Science
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Focal adhesion disassembly is regulated by a RIAM to MEK-1 pathway

Authors: Coló, Georgina P.; Hernández-Varas, Pablo; Lock, John; Bartolomé, Rubén Álvaro; Arellano-Sánchez, Nohemí; Strömblad, Staffan; Teixidó, Joaquín;

Focal adhesion disassembly is regulated by a RIAM to MEK-1 pathway

Abstract

Cell migration and invasion require regulated turnover of integrin-dependent adhesion complexes. RIAM is an adaptor protein mediating talin recruitment to the cell membrane, whose depletion leads to defective melanoma cell migration and invasion. Here we investigated the potential involvement of RIAM in focal adhesion (FA) dynamics. RIAM-depleted melanoma and breast carcinoma cells displayed an increased number, size and stability of FAs, which accumulated centrally located at the ventral cell surface, a phenotype caused by defective FA disassembly. Impairment in FA disassembly due to RIAM knocking down correlated with deficient integrin-dependent MEK-Erk1/2 activation, and importantly, overexpression of constitutively active MEK resulted in rescue of FA disassembly and recovery of cell invasion. Furthermore, RIAM-promoted RhoA activation following integrin engagement was needed for subsequent Erk1/2 activation, and RhoA overexpression partially rescued the FA phenotype in RIAM-depleted cells, suggesting a functional role also for RhoA downstream of RIAM, but upstream of Erk1/2. In addition, RIAM knock down led to enhanced phosphorylation of paxillin Tyr118 and Tyr31. However, expression of phosphomimetic and non-phosphorylatable mutants at these paxillin residues indicated that paxillin hyper-phosphorylation is a subsequent consequence of the blockade of FA disassembly, but does not cause the FA phenotype. RIAM depletion also weakened association between FA proteins, suggesting that it may play important adaptor roles for the correct assembly of adhesion complexes. Our data indicate that integrin-triggered, RIAM-dependent MEK activation may represent a key feed-back event required for efficient FA disassembly, which may contribute to explain the role of RIAM in cell migration and invasion.

Keywords

Focal Adhesions, MAP Kinase Signaling System, Protein Tyrosine Phosphatase, Non-Receptor Type 12, MAP Kinase Kinase 1, Membrane Proteins, Models, Biological, Up-Regulation, Enzyme Activation, Mice, Cell Line, Tumor, Focal Adhesion Protein-Tyrosine Kinases, Gene Knockdown Techniques, Animals, Humans, Paxillin, Phosphorylation, Extracellular Signal-Regulated MAP Kinases, Phosphotyrosine, Melanoma, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 43
    download downloads 47
  • 43
    views
    47
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
25
Top 10%
Average
Top 10%
43
47
Green