Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Dynami...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Delayed dopaminergic neuron differentiation in Lrp6 mutant mice

Authors: Castelo-Branco, G.; Andersson, E.R.; Minina, E.; Sousa, K.M.; Ribeiro, D.; Kokubu, C.; Imai, K.; +3 Authors

Delayed dopaminergic neuron differentiation in Lrp6 mutant mice

Abstract

AbstractWnts are known to bind and activate multiple membrane receptors/coreceptors and to regulate dopaminergic (DA) neuron development and ventral midbrain (VM) morphogenesis. The low density lipoprotein receptor–related protein (Lrp6) is a Wnt co‐receptor, yet it remains unclear whether Lrp6 is required for DA neuron development or VM morphogenesis. Lrp6 is expressed ubiquitously in the developing VM. In this study, we show that Lrp6−/− mice exhibit normal patterning, proliferation and cell death in the VM, but display a delay in the onset of DA precursor differentiation. A transient 50% reduction in tyrosine hydroxylase–positive DA neurons and in the expression of DA markers such as Nurr1 and Pitx3, as well as a defect in midbrain morphogenesis was detected in the mutant embryos at embryonic day 11.5. Our results, therefore, suggest a role for Lrp6 in the onset of DA neuron development in the VM as well as a role in midbrain morphogenesis. Developmental Dynamics 239:211–221, 2010. © 2009 Wiley‐Liss, Inc.

Country
Germany
Keywords

metabolism [Nuclear Receptor Subfamily 4, Group A, Member 2], Lrp; Wnt; Dopaminergic; Neurogenesis, Precursor; Midbrain, Genotype, Tyrosine 3-Monooxygenase, Dopamine, Mice, Mesencephalon, metabolism [Homeodomain Proteins], Nuclear Receptor Subfamily 4, Group A, Member 2, Morphogenesis, Animals, metabolism [Transcription Factors], metabolism [Dopamine], In Situ Hybridization, Homeodomain Proteins, Mice, Knockout, Neurons, Microscopy, Confocal, genetics [Cell Differentiation], Cell Differentiation, Immunohistochemistry, metabolism [Tyrosine 3-Monooxygenase], embryology [Mesencephalon], genetics [Morphogenesis], physiology [Cell Differentiation], Bromodeoxyuridine, metabolism [Neurons], cytology [Neurons], homeobox protein PITX3, Transcription Factors, ddc: ddc:610

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Green
bronze