Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Astronomy & Astrophysics
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY NC ND
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Clues of the restarting active galactic nucleus activity of Mrk 1498 from GTC/MEGARA integral field spectroscopy data

Authors: S. Cazzoli; L. Hernández-García; I. Márquez; J. Masegosa; G. Bruni; F. Panessa; L. Bassani;

Clues of the restarting active galactic nucleus activity of Mrk 1498 from GTC/MEGARA integral field spectroscopy data

Abstract

Context. Some giant radio galaxies selected at X-rays with active galactic nuclei (AGN) show signs of a restarted nuclear activity (old lobes plus a nuclear young radio source probed by giga-hertz peaked spectra). The study of these sources gives us insights into the AGN activity history. More specifically, the kinematics and properties of the outflows can be used as a tool to describe the activity of the source. Aims. One object in this peculiar class is Mrk 1498, a giant low-frequency double radio source that shows extended emission in [O III]. This emission is likely related to the history of the nuclear activity of the galaxy. We investigate whether this bubble-like emission might trace an outflow from either present or past AGN activity. Methods. Using a medium-resolution spectroscopy (R ∼ 10 000) available with MEGARA/GTC, we derived kinematics and fluxes of the ionised gas from modelling the [O III] and Hβ features. We identified three kinematic components and mapped their kinematics and flux. Results. All the components show an overall blue to red velocity pattern, with similar peak-to-peak velocities but a different velocity dispersion. At a galactocentric distance of ∼2.3 kpc, we found a blob with a velocity up to 100 km s−1, and a high velocity dispersion (∼170 km s−1) that is spatially coincident with the direction of the radio jet. The observed [O III]/Hβ line ratio indicates possible ionisation from AGN or shocks nearly everywhere. The clumpy structure visibile in HST images at kiloparsec scales show the lowest values of log[O III]/Hβ (< 1), which is likely not related to the photoionisation by the AGN. Conclusions. Taking optical and radio activity into account, we propose a scenario of two different ionised gas features over the radio AGN lifecycle of Mrk 1498. The radio emission suggests at least two main radio activity episodes: an old episode at megaparsec scales (formed during a time span of ∼100 Myr), and a new episode from the core (> 2000 yr ago). At optical wavelengths, we observe clumps and a blob that are likely associated with fossil outflow. The latter is likely powered by past episodes of the flickering AGN activity that may have occurred between the two main radio phases.

Keywords

ISM: jets and outflows, Astrophysics of Galaxies (astro-ph.GA), Galaxies: kinematics and dynamics, FOS: Physical sciences, Galaxies: active, Astrophysics - Astrophysics of Galaxies, Galaxies: nuclei

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 27
    download downloads 27
  • 27
    views
    27
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
27
27
Green
hybrid