Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Investigative Ophtha...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Investigative Ophthalmology & Visual Science
Article . 2007 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Age-Related Cataracts in α3Cx46-Knockout Mice Are Dependent on a Calpain 3 Isoform

Authors: Jer R. Kuszak; Xiangyang Liu; Yajun Tang; Nalin M. Kumar; Isabelle Richard; R. Antonio Herrera; Rebecca K. Zoltoski; +1 Authors

Age-Related Cataracts in α3Cx46-Knockout Mice Are Dependent on a Calpain 3 Isoform

Abstract

Previous studies have demonstrated that in 129alpha3Cx46-/- mice, age-related nuclear cataract is formed. In the present study, a more in vivo-relevant model was generated to test the hypothesis that the calpain 3 gene is involved in age-related nuclear cataractogenesis in alpha3Cx46 knockout mice.To test the hypothesis that the calpain 3 gene is involved in age-related nuclear cataractogenesis in alpha3Cx46 knockout mice, 129alpha3Cx46-/- and CAPN3-/- mice were mated to generate homozygous double-knockout (dKO) mice. Lenses from the mice were examined by visual observation, laser scan analysis, and histologic and biochemical methods.In the absence of the CAPN3 gene, the formation of a cataract was delayed, and its appearance was changed to a more diffuse, pulverulent type. Unlike in the 129alpha3Cx46-/- mouse, cleavage of gamma-crystallin was not detected in the dKO mouse. In both 129alpha3Cx46-/- and dKO mice, total Ca2+ increased.The present study shows for the first time that calpain 3 is necessary for the formation of age-dependent nuclear cataracts in alpha3Cx46-/- mice. Evidence that the calpain 3 gene is directly involved in, or part of the pathway that leads to, gamma-crystallin cleavage is presented. These results are consistent with the hypothesis that the loss of alpha3Cx46 leads to increased levels of Ca2+ ions, and this increase activates the CAPN3 isoform, Lp82/85, which results in the formation of a nuclear cataract.

Keywords

Male, Mice, Knockout, Aging, Genotype, Calpain, Blotting, Western, Muscle Proteins, Mice, Transgenic, Organ Size, Cataract, Connexins, Mice, Organ Culture Techniques, Body Water, Lens, Crystalline, Animals, Protein Isoforms, Calcium, Female, gamma-Crystallins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
gold