Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clinical Immunologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Clinical Immunology
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Expression of Extracellular Matrix Ligands and Receptors in the Muscular Tissue and Draining Lymph Nodes of mdx Dystrophic Mice

Authors: Jussara Lagrota-Cândido; Thereza Quirico-Santos; Thereza Quirico-Santos; Wilson Savino; Isabella Canella;

Expression of Extracellular Matrix Ligands and Receptors in the Muscular Tissue and Draining Lymph Nodes of mdx Dystrophic Mice

Abstract

The mdx mouse, an animal model of Duchenne muscular dystrophy, develops an X-linked recessive inflammatory myopathy. During onset of disease and height of myonecrosis, mdx mice also display important changes in the microenvironment of lymphoid tissues. Draining lymph nodes showed reduced cellularity and atrophy accompanied by intense immunolabeling for fibronectin, laminin, and type-IV collagen. Following clinical amelioration of dystrophy, mdx mice showed enhanced cellularity and a consistent increase in the absolute numbers of CD4(+) and CD8(+) cells expressing alpha4(high) and alpha5(high) extracellular matrix receptors. Furthermore, infiltrating cells in the proximity of myonecrosis expressed alpha4, alpha5, and alpha6 integrin chains during both height of myonecrosis and muscular tissue regeneration. Such results indicate that during distinct phases of muscular dystrophy, altered expression of extracellular matrix ligands and receptors may be influencing myonecrosis by promoting adhesion and migration of mononuclear cells into the altered skeletal muscle and toward local draining lymphoid tissue.

Keywords

Male, Extracellular Matrix Proteins, Integrins, Lymphoid Tissue, Receptors, Cell Surface, Ligands, Lymphocyte Subsets, Mice, Inbred C57BL, Muscular Dystrophy, Duchenne, Disease Models, Animal, Mice, Mice, Inbred mdx, Animals, Female, Lymph Nodes, Muscle, Skeletal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!