Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 2003
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome

Authors: Robert R H, Anholt; Christy L, Dilda; Sherman, Chang; Juan-José, Fanara; Nalini H, Kulkarni; Indrani, Ganguly; Stephanie M, Rollmann; +2 Authors

The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome

Abstract

We combined transcriptional profiling and quantitative genetic analysis to elucidate the genetic architecture of olfactory behavior in Drosophila melanogaster. We applied whole-genome expression analysis to five coisogenic smell-impaired (smi) mutant lines and their control. We used analysis of variance to partition variation in transcript abundance between males and females and between smi genotypes and to determine the genotype-by-sex interaction. A total of 666 genes showed sexual dimorphism in transcript abundance, and 530 genes were coregulated in response to one or more smi mutations, showing considerable epistasis at the level of the transcriptome in response to single mutations. Quantitative complementation tests of mutations at these coregulated genes with the smi mutations showed that in most cases (67%) epistatic interactions for olfactory behavior mirrored epistasis at the level of transcription, thus identifying new candidate genes regulating olfactory behavior.

Keywords

Smell, Drosophila melanogaster, Gene Expression Regulation, Transcription, Genetic, Odorants, Animals, Epistasis, Genetic, Biotransformation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    122
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
122
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!