<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Rpn10 is a subunit of the 26S proteasome that recognizes polyubiquitinated proteins. The importance of Rpn10 in ubiquitin-mediated proteolysis is debatable, since a deficiency of Rpn10 causes different phenotypes in different organisms. To date, the role of mammalian Rpn10 has not been examined genetically. Moreover, vertebrates have five splice variants of Rpn10 whose expressions are developmentally regulated, but their biological significance is not understood. To address these issues, we generated three kinds of Rpn10 mutant mice. Rpn10 knockout resulted in early-embryonic lethality, demonstrating the essential role of Rpn10 in mouse development. Rpn10a knock-in mice, which exclusively expressed the constitutive type of Rpn10 and did not express vertebrate-specific variants, grew normally, indicating that Rpn10 diversity is not essential for conventional development. Mice expressing the N-terminal portion of Rpn10, which contained a von Willebrand factor A (VWA) domain but lacked ubiquitin-interacting motifs (Rpn10DeltaUIM), also exhibited embryonic lethality, suggesting the important contribution of UIM domains to viability, but survived longer than Rpn10-null mice, consistent with a "facilitator" function of the VWA domain. Biochemical analysis of the Rpn10DeltaUIM liver showed specific impairment of degradation of ubiquitinated proteins. Our results demonstrate that Rpn10-mediated degradation of ubiquitinated proteins, catalyzed by UIMs, is indispensable for mammalian life.
Mice, Knockout, Proteasome Endopeptidase Complex, Ubiquitination, RNA-Binding Proteins, Embryo, Mammalian, Alternative Splicing, Mice, Protein Subunits, Liver, Gene Targeting, Animals, Carrier Proteins, Polyubiquitin
Mice, Knockout, Proteasome Endopeptidase Complex, Ubiquitination, RNA-Binding Proteins, Embryo, Mammalian, Alternative Splicing, Mice, Protein Subunits, Liver, Gene Targeting, Animals, Carrier Proteins, Polyubiquitin
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 93 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |