
pmid: 12628239
The crystal structure of the apo-form of an R-specific alcohol dehydrogenase from Lactobacillus brevis (LB-RADH) was solved and refined to 1.8A resolution. LB-RADH is a member of the short-chain dehydrogenase/reductase (SDR) enyzme superfamily. It is a homotetramer with 251 amino acid residues per subunit and uses NADP(H) as co-enzyme. NADPH and the substrate acetophenone were modelled into the active site. The enantiospecificity of the enzyme can be explained on the basis of the resulting hypothetical ternary complex. In contrast to most other SDR enzymes, the catalytic activity of LB-RADH depends strongly on the binding of Mg(2+). Mg(2+) removal by EDTA inactivates the enzyme completely. In the crystal structure, the Mg(2+)-binding site is well defined. The ion has a perfect octahedral coordination sphere and occupies a special position concerning crystallographic and molecular point symmetry, meaning that each RADH tetramer contains two magnesium ions. The magnesium ion is no direct catalytic cofactor. However, it is structurally coupled to the putative C-terminal hinge of the substrate-binding loop and, via an extended hydrogen bonding network, to some side-chains forming the substrate binding region. Therefore, the presented structure of apo-RADH provides plausible explanations for the metal dependence of the enzyme.
Binding Sites, Sequence Homology, Amino Acid, Protein Conformation, Molecular Sequence Data, Alcohol Dehydrogenase, Acetophenones, Crystallography, X-Ray, NAD, Substrate Specificity, Lactobacillus, Magnesium, Amino Acid Sequence, Crystallization, Protein Structure, Quaternary, NADP
Binding Sites, Sequence Homology, Amino Acid, Protein Conformation, Molecular Sequence Data, Alcohol Dehydrogenase, Acetophenones, Crystallography, X-Ray, NAD, Substrate Specificity, Lactobacillus, Magnesium, Amino Acid Sequence, Crystallization, Protein Structure, Quaternary, NADP
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 118 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
