Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regular Partitions and Their Use in Structural Pattern Recognition

Authors: Fiorucci, Marco;

Regular Partitions and Their Use in Structural Pattern Recognition

Abstract

Recent years are characterized by an unprecedented quantity of available network data which are produced at an astonishing rate by an heterogeneous variety of interconnected sensors and devices. This high-throughput generation calls for the development of new effective methods to store, retrieve, understand and process massive network data. In this thesis, we tackle this challenge by introducing a framework to summarize large graphs based on Szemer��di's Regularity Remma (RL), which roughly states that any sufficiently large graph can almost entirely be partitioned into a bounded number of random-like bipartite graphs. The partition resulting from the RL gives rise to a summary, which inherits many of the essential structural properties of the original graph. We first extend an heuristic version of the RL to improve its efficiency and its robustness. We use the proposed algorithm to address graph-based clustering and image segmentation tasks. In the second part of the thesis, we introduce a new heuristic algorithm which is characterized by an improvement of the summary quality both in terms of reconstruction error and of noise filtering. We use the proposed heuristic to address the graph search problem defined under a similarity measure. Finally, we study the linkage among the regularity lemma, the stochastic block model and the minimum description length. This study provide us a principled way to develop a graph decomposition algorithm based on stochastic block model which is fitted using likelihood maximization.

PhD Thesis (Mar 2019), Ca Foscari University, Venice. arXiv admin note: text overlap with arXiv:1704.07114 by other authors

Keywords

FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Data Structures and Algorithms, Computer Science - Computer Vision and Pattern Recognition, Data Structures and Algorithms (cs.DS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green