
Neurodegeneration has been predominantly recognized as neuronal breakdown induced by the accumulation of aggregated and/or misfolded proteins and remains a preliminary factor in age-dependent disease. Recently, critical regulating molecular mechanisms and cellular pathways have been shown to induce neurodegeneration long before aggregate accumulation could occur. Although this opens the possibility of identifying biomarkers for early onset diagnosis, many of these pathways vary in their modes of dysfunction while presenting similar clinical phenotypes. With selectivity remaining difficult, it is promising that these neuroprotective pathways are regulated through the ubiquitin-proteasome system (UPS). This essential post-translational modification (PTM) involves the specific attachment of ubiquitin onto a substrate, specifically marking the ubiquitin-tagged protein for its intracellular fate based upon the site of attachment, the ubiquitin chain type built, and isopeptide linkages between different ubiquitin moieties. This review highlights both the direct and indirect impact ubiquitylation has in oxidative stress response and neuroprotection, and how irregularities in these intricate processes lead towards the onset of neurodegenerative disease (NDD).
QH573-671, Ubiquitination, Review, Neuroprotection, neurodegenerative disease, redox chemistry, post-translational modifications, Animals, Homeostasis, Humans, neuroprotection, ubiquitin-proteasome system, CNS, Cytology, Oxidation-Reduction, Protein Processing, Post-Translational
QH573-671, Ubiquitination, Review, Neuroprotection, neurodegenerative disease, redox chemistry, post-translational modifications, Animals, Homeostasis, Humans, neuroprotection, ubiquitin-proteasome system, CNS, Cytology, Oxidation-Reduction, Protein Processing, Post-Translational
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
