Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AJP Cell Physiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AJP Cell Physiology
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hypoxia reprograms calcium signaling and regulates myoglobin expression

Authors: Pradeep P.A. Mammen; Paul B. Rosenberg; J. Michael DiMaio; Guojin Huang; Cindy M. Martin; Cindy M. Martin; Michael D. White; +5 Authors

Hypoxia reprograms calcium signaling and regulates myoglobin expression

Abstract

Myoglobin is an oxygen storage molecule that is selectively expressed in cardiac and slow-twitch skeletal muscles that have a high oxygen demand. Numerous studies have implicated hypoxia in the regulation of myoglobin expression as an adaptive response to hypoxic stress. However, the details of this relationship remain undefined. In the present study, adult mice exposed to 10% oxygen for periods up to 3 wk exhibited increased myoglobin expression only in the working heart, whereas myoglobin was either diminished or unchanged in skeletal muscle groups. In vitro and in vivo studies revealed that hypoxia in the presence or absence of exercise-induced stimuli reprograms calcium signaling and modulates myoglobin gene expression. Hypoxia alone significantly altered calcium influx in response to cell depolarization or depletion of endoplasmic reticulum calcium stores, which inhibited the expression of myoglobin. In contrast, our whole animal and transcriptional studies indicate that hypoxia in combination with exercise enhanced the release of calcium from the sarcoplasmic reticulum via the ryanodine receptors triggered by caffeine, which increased the translocation of nuclear factor of activated T-cells into the nucleus to transcriptionally activate myoglobin expression. The present study unveils a previously unrecognized mechanism where the hypoxia-mediated regulation of calcium transients from different intracellular pools modulates myoglobin gene expression. In addition, we observed that changes in myoglobin expression, in response to hypoxia, are not dependent on hypoxia-inducible factor-1 or changes in skeletal muscle fiber type. These studies enhance our understanding of hypoxia-mediated gene regulation and will have broad applications for the treatment of myopathic diseases.

Keywords

Male, Calcium Channels, L-Type, Calcineurin, Muscle Fibers, Skeletal, Mice, Transgenic, Adaptation, Physiological, Cell Hypoxia, Electric Stimulation, Cell Line, Hindlimb, Disease Models, Animal, Mice, Genes, Reporter, Caffeine, Animals, Humans, Calcium Signaling, Hypoxia, Muscle, Skeletal, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities