<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 14506259
The optimal amino acid sequence of substrates for recognition by the cyclin-dependent kinases is well established as -Ser/Thr0-Pro+1-Lys+2-Lys+3-. The catalytic efficiency of CDK2-cyclin A is impaired 2000-, 10-, and 150-fold, when Pro+1, Lys+2, or Lys+3, respectively, is substituted with Ala in a short synthetic peptide substrate. Yet, in physiological substrates of both CDK2-cyclin A and CDK2-cyclin E, it is found that Lys+2, and, occasionally, both Lys+2 and Lys+3 together are replaced with suboptimal determinants. Such suboptimal phosphorylation site motifs are invariably associated with a distinct cyclin-binding (Cy) motif, which has been shown to compensate for otherwise poor catalysis. Here we have investigated the kinetic basis for substrate recognition by CDK2-cyclin A. In the optimal motif, Pro+1 serves to dramatically enhance both substrate binding affinity as well as the rate of chemical phosphotransfer, whereas Lys+2 and Lys+3 both serve to enhance mainly substrate binding. When linked to a suboptimal phosphorylation site sequence (Lys+2 --> Pro) the Cy motif increases catalytic efficiency (kcat/Km) by increasing affinity without affecting turnover (kcat). When fused to the optimal sequence, however, catalytic efficiency is only minimally enhanced, because the resulting high substrate affinity impedes the rate of the phosphoryl transfer reaction. Our results provide kinetic insight into the basis for selecting suboptimal specificity determinants for the phosphorylation of cellular substrates.
Cyclin-Dependent Kinase 2, Cyclin A, Catalysis, Substrate Specificity, Kinetics, Amino Acid Substitution, Consensus Sequence, CDC2-CDC28 Kinases, Humans, Thermodynamics, Amino Acid Sequence, Phosphorylation, Protein Binding
Cyclin-Dependent Kinase 2, Cyclin A, Catalysis, Substrate Specificity, Kinetics, Amino Acid Substitution, Consensus Sequence, CDC2-CDC28 Kinases, Humans, Thermodynamics, Amino Acid Sequence, Phosphorylation, Protein Binding
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |