Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cancer Research
Article . 2009 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2009
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

p38δ Mitogen-Activated Protein Kinase Is Essential for Skin Tumor Development in Mice

Authors: Schindler, Eva M.; Hindes, Anna; Gribben, Erin L.; Burns, Carole J.; Yin, Yan; Lin, Meei-Hua; Owen, Robert J.; +4 Authors

p38δ Mitogen-Activated Protein Kinase Is Essential for Skin Tumor Development in Mice

Abstract

Abstract Activating Ras mutations occur in a large portion of human tumors. Yet, the signaling pathways involved in Ras-induced tumor formation remain incompletely understood. The mitogen-activated protein kinase pathways are among the best studied Ras effector pathways. The p38 mitogen-activated protein kinase isoforms are important regulators of key biological processes including cell proliferation, differentiation, survival, inflammation, senescence, and tumorigenesis. However, the specific in vivo contribution of individual p38 isoforms to skin tumor development has not been elucidated. Recent studies have shown that p38δ, a p38 family member, functions as an important regulator of epidermal keratinocyte differentiation and survival. In the present study, we have assessed the effect of p38δ deficiency on skin tumor development in vivo by subjecting p38δ knockout mice to a two-stage 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate chemical skin carcinogenesis protocol. We report that mice lacking p38δ gene exhibited a marked resistance to development of 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin papillomas, with increased latency and greatly reduced incidence, multiplicity, and size of tumors compared with wild-type mice. Our data suggest that the underlying mechanism for reduced susceptibility to skin carcinogenesis in p38δ-null mice involves a defect in proliferative response associated with aberrant signaling through the two major transformation-promoting pathways: extracellular signal-regulated kinase 1/2-activator protein 1 and signal transducer and activator of transcription 3. These findings strongly suggest an in vivo role for p38δ in promoting cell proliferation and tumor development in epidermis and may have therapeutic implication for skin cancer. [Cancer Res 2009;69(11):4648–55]

Keywords

Male, Mice, Knockout, 570, Hyperplasia, Skin Neoplasms, Genotype, Carcinoma, 610, Mice, Inbred C57BL, Mice, Mitogen-Activated Protein Kinase 13, Genes, ras, Animals, Newborn, Mutation, Disease Progression, Animals, Tetradecanoylphorbol Acetate, Female, Epidermis, Cell Proliferation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
bronze