Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The International Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The International Journal Of Cell Cloning
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CCAAT/Enhancer Binding Protein Beta is Expressed in Satellite Cells and Controls Myogenesis

Authors: François Marchildon; Charles Keller; Catherine St-Louis; Daniel Lamothe; Neena Lala; Nadine Wiper-Bergeron; Grace Li;

CCAAT/Enhancer Binding Protein Beta is Expressed in Satellite Cells and Controls Myogenesis

Abstract

Upon injury, muscle satellite cells become activated and produce skeletal muscle precursors that engage in myogenesis. We demonstrate that the transcription factor CCAAT/enhancer binding protein beta (C/EBPβ) is expressed in the satellite cells of healthy muscle. C/EBPβ expression is regulated during myogenesis such that C/EBPβ is rapidly and massively downregulated upon induction to differentiate. Furthermore, persistent expression of C/EBPβ in myoblasts potently inhibits differentiation at least in part through the inhibition of MyoD protein function and stability. As a consequence, myogenic factor expression, myosin heavy chain expression, and fusogenic activity were reduced in C/EBPβ-overexpressing cells. Using knockout models, we demonstrate that loss of Cebpb expression in satellite cells results in precocious differentiation of myoblasts in growth conditions and greater cell fusion upon differentiation. In vivo, loss of Cebpb expression in satellite cells resulted in larger muscle fiber cross-sectional area and improved repair after muscle injury. Our results support the notion that C/EBPβ inhibits myogenic differentiation and that its levels must be reduced to allow for activation of MyoD target genes and the progression of differentiation.

Keywords

Mice, Inbred C57BL, Mice, Satellite Cells, Skeletal Muscle, CCAAT-Enhancer-Binding Protein-beta, Animals, Cell Differentiation, Female, Muscle Development, Muscle, Skeletal, Cells, Cultured, MyoD Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
bronze