
The wavelet transform provides a sparse representation for smooth images, enabling efficient approximation and compression using techniques such as zerotrees. Unfortunately, this sparsity does not extend to piecewise smooth images, where edge discontinuities separating smooth regions persist along smooth contours. This lack of sparsity hampers the efficiency of wavelet-based approximation and compression. On the class of images containing smooth C2 regions separated by edges along smooth C2 contours, for example, the asymptotic rate-distortion (R-D) performance of zerotree-based wavelet coding is limited to D(R) (< or = 1/R, well below the optimal rate of 1/R2. In this paper, we develop a geometric modeling framework for wavelets that addresses this shortcoming. The framework can be interpreted either as 1) an extension to the "zerotree model" for wavelet coefficients that explicitly accounts for edge structure at fine scales, or as 2) a new atomic representation that synthesizes images using a sparse combination of wavelets and wedgeprints--anisotropic atoms that are adapted to edge singularities. Our approach enables a new type of quadtree pruning for piecewise smooth images, using zerotrees in uniformly smooth regions and wedgeprints in regions containing geometry. Using this framework, we develop a prototype image coder that has near-optimal asymptotic R-D performance D(R) < or = (log R)2 /R2 for piecewise smooth C2/C2 images. In addition, we extend the algorithm to compress natural images, exploring the practical problems that arise and attaining promising results in terms of mean-square error and visual quality.
edges, Image compression, Multiscale geometry processing, Edges, Numerical Analysis, Computer-Assisted, Signal Processing, Computer-Assisted, Data Compression, Image Enhancement, DSP for Communications, wavelets, image compression, wedgelets, wedgeprints, nonlinear approximation, 510, 004, Image Interpretation, Computer-Assisted, Computer Graphics, rate-distortion, Edges image compression, Algorithms
edges, Image compression, Multiscale geometry processing, Edges, Numerical Analysis, Computer-Assisted, Signal Processing, Computer-Assisted, Data Compression, Image Enhancement, DSP for Communications, wavelets, image compression, wedgelets, wedgeprints, nonlinear approximation, 510, 004, Image Interpretation, Computer-Assisted, Computer Graphics, rate-distortion, Edges image compression, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
