Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Communication...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Communications
Article . 2015 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Communications
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis

Authors: Randy L. Johnson; Xiufeng Sun; Hong Rui Wang; Xianming Deng; Fan Fuqin; Jinjia Zhang; Bin Zhao; +18 Authors

Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis

Abstract

The role of the unfolded protein response (UPR) in tissue homeostasis remains largely unknown. Here we find that loss of Mst1/2, the mammalian Hippo orthologues, or their regulator WW45, leads to a remarkably enlarged endoplasmic reticulum (ER) size-associated UPR. Intriguingly, attenuation of the UPR by tauroursodeoxycholic acid (TUDCA) diminishes Mst1/2 mutant-driven liver overgrowth and tumorigenesis by promoting nuclear exit and degradation of Hippo downstream effector Yap. Yap is required for UPR activity and ER expansion to alleviate ER stress. During the adaptive stage of the UPR, PERK kinase-eIF2α axis activates Yap, while prolonged ER stress-induced Hippo signalling triggers assembly of the GADD34/PP1 complex in a negative feedback loop to inhibit Yap and promote apoptosis. Significantly, the deregulation of UPR signals associated with Yap activation is found in a substantial fraction of human hepatocellular carcinoma (HCC). Thus, we conclude Yap integrates Hippo and UPR signalling to control liver size and tumorigenesis.

Keywords

Mice, Knockout, Carcinogenesis, Hepatocyte Growth Factor, Blotting, Western, Liver Neoplasms, Molecular Sequence Data, Cell Cycle Proteins, Hep G2 Cells, Organ Size, Endoplasmic Reticulum, Phosphoproteins, Models, Biological, Activating Transcription Factor 6, Mice, Inbred C57BL, Liver, Mutation, Hepatocytes, Animals, Humans, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    146
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
146
Top 1%
Top 10%
Top 1%
gold