
pmid: 9564832
The effects of cAMP on the oxytocin-stimulated increase in phosphatidylinositide turnover and the possible pathways involved were investigated in a human myometrial cell line (PHM1-41) and in COS-M6 cells overexpressing the oxytocin receptor. Preincubation with chlorophenylthio-cAMP (CPT-cAMP), forskolin, or relaxin inhibited oxytocin-stimulated phosphatidylinositide turnover in PHM1-41 cells, and the inhibition was reversed by H-89, a relatively specific protein kinase A inhibitor. Both CPT-cAMP and transiently expressed protein kinase A catalytic subunit inhibited stimulation by oxytocin and carbachol of [3H]inositol 1,3,4-trisphosphate formation in COS-M6 cells expressing oxytocin or muscarinic M1 receptors, respectively. CPT-cAMP also inhibited phosphatidylinositide turnover stimulation by endothelin-1 in PHM1-41 cells, further demonstrating the generality of the cAMP-inhibitory mechanism. Since G betagamma activation of phospholipase Cbeta2 (PLCbeta2) is a suggested target of protein kinase A, the possibility that the oxytocin receptor couples to PLCbeta2 via G alpha(i)G betagamma activation was explored. Western blot analysis of PHM1-41 cells and COS-M6 cells detected PLCbeta1 and PLCbeta3, but not PLCbeta2. In PHM1-41 cells, pertussis toxin reduced the oxytocin-stimulated increase in [3H]inositol 1,3,4-trisphosphate by 53%, and this was reversed completely by H-89. Thus, the inhibitory effect of pertussis toxin may result from an indirect effect of cAMP elevation. These data suggest that receptor/G alpha(q)-coupled stimulation of PLCbeta1 or PLCbeta3 can be inhibited by cAMP through a phosphorylation mechanism involving protein kinase A that does not involve PLCbeta2. In smooth muscle, this mechanism could constitute potentially important cross-talk between pathways regulating contraction and relaxation.
Inositol Phosphates, Blotting, Western, Receptor, Muscarinic M1, Oxytocin, Transfection, Cyclic AMP-Dependent Protein Kinases, Receptors, Muscarinic, Cell Line, Pertussis Toxin, GTP-Binding Proteins, Pregnancy, Receptors, Oxytocin, COS Cells, Cyclic AMP, Myometrium, Animals, Humans, Carbachol, Female, Phosphorylation
Inositol Phosphates, Blotting, Western, Receptor, Muscarinic M1, Oxytocin, Transfection, Cyclic AMP-Dependent Protein Kinases, Receptors, Muscarinic, Cell Line, Pertussis Toxin, GTP-Binding Proteins, Pregnancy, Receptors, Oxytocin, COS Cells, Cyclic AMP, Myometrium, Animals, Humans, Carbachol, Female, Phosphorylation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
