
pmid: 16787328
The syntheses of (R)- and (S)-norcarnitine ethyl esters are described starting with an optimized, chiral chemical reduction of ethyl 4-chloroacetoacetate followed by azide substitution, reduction, and dimethylation. The reaction of (R)- and (S)-norcarnitine ethyl esters with 1-bromoheptadecan-2-one gives (+)- and (-)-6-[(methoxycarbonyl)methyl]-2-pentadecyl-4,4-dimethylmorpholinium bromide, respectively, which hydrolyzes to (+)- and (-)-6-(carboxylatomethyl)-2-pentadecyl-4,4-dimethylmorpholinium (hemipalmitoylcarnitinium, (+)- and (-)-HPC), respectively, upon treatment with a hydroxide resin. (+)- and (-)-HPC are reversible active-site directed inhibitors of hepatic mitochondrial CPTs. Both stereoisomers inhibit CPT I and CPT II in control and streptozotocin diabetic rat to the same extent (Imax=100%). Using intact mitochondria (CPT I), I50values for (-)-HPC and (+)-HPC were 15.5 microM and 47.5 microM, respectively. The I50 values for CPT II were 6.7 microM and 38.5 microM for (-)-HPC and (+)-HPC, respectively. The mode of inhibition was uncompetitive for CPT I with respect to acyl-CoA. The apparent K(i) for (-)-HPC is about 5 microM. These data suggest that (-)-HPC may be useful for further evaluation as an antidiabetic agent.
Male, Binding Sites, Carnitine O-Palmitoyltransferase, Molecular Conformation, Palmitoylcarnitine, Mitochondria, Liver, Stereoisomerism, Intracellular Membranes, Diabetes Mellitus, Experimental, Rats, Rats, Sprague-Dawley, Disease Models, Animal, Structure-Activity Relationship, Animals
Male, Binding Sites, Carnitine O-Palmitoyltransferase, Molecular Conformation, Palmitoylcarnitine, Mitochondria, Liver, Stereoisomerism, Intracellular Membranes, Diabetes Mellitus, Experimental, Rats, Rats, Sprague-Dawley, Disease Models, Animal, Structure-Activity Relationship, Animals
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
