Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuropsychobiologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuropsychobiology
Article . 1988 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decreased Central GABA B Receptor Binding Sites in Diabetic Rats

Authors: Alain J. Puech; Jacques Massol; Philippe Pichat; Patrick Martin;

Decreased Central GABA B Receptor Binding Sites in Diabetic Rats

Abstract

Little is known about the implication of central GABAergic neurons. However, there is evidence suggesting a growing importance of GABAergic function in the action of antidepressants. Since streptozotocin (STZ)-diabetic rats have been shown to be resistant to the action of various antidepressants, we were interested in evaluating the density of GABAergic receptor binding sites in the cortex of STZ-diabetic rats on day 15 and day 30 of diabetes. A specific and marked decrease in GABA B receptor density was observed with no change in GABA A. Although no clear relationship could be demonstrated, it may be suggested that a central GABAergic dysfunction of diabetic rats may contribute to explain their resistance to antidepressants.

Keywords

Male, Synaptic Membranes, Animals, Receptors, GABA-A, Antidepressive Agents, gamma-Aminobutyric Acid, Diabetes Mellitus, Experimental, Frontal Lobe, Rats

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!