Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Calcium
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Calcium
Article . 2006
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A TRPC-like non-selective cation current activated by α1-adrenoceptors in rat mesenteric artery smooth muscle cells

Authors: Hill, AJ; Hinton, JM; Cheng, H; Gao, Z; Bates, DO; Hancox, JC; Langton, PD; +1 Authors

A TRPC-like non-selective cation current activated by α1-adrenoceptors in rat mesenteric artery smooth muscle cells

Abstract

The TRPC family of non-selective cation channels has been suggested to play a key role in the responses to alpha1-adrenoceptor stimulation of vascular smooth muscle. However, there are still very few reports of non-selective cation currents activated by alpha1-AR in resistance arteries. Here, we examine the expression of TRPC channels and the currents activated by alpha1-adrenoceptors in rat mesenteric resistance artery smooth muscle. Messenger RNA and protein for TRPC1, TRPC3 and TRPC6 were detected within the arteries by RT-PCR and immunoblotting. Endothelial and adventitial layers were found to express the TRPC1, TRPC3 and TRPC6 proteins whereas only TRPC1 and TRPC6 were detected in the arterial smooth muscle by confocal immunofluorescence microscopy. In whole-cell patch-clamp recordings from isolated mesenteric arterial myocytes, an outwardly rectifying non-selective cation current was activated by both the alpha1-adrenoceptor agonist, phenylephrine (10 microM), and the diacylglycerol analogue, 1-oleoyl-2-acetyl-sn-glycerol (100 microM). Responses to 1-oleoyl-2-acetyl-sn-glycerol were not blocked, but increased, following inhibition of protein-kinase-C with either bisindolylmaleimide-I (1 microM) or chelerythrine (1 microM). The currents activated by both phenylephrine and 1-oleoyl-2-acetyl-sn-glycerol were inhibited by Gd3+ (100 microM) but potentiated by flufenamic acid (100 microM). Collectively, these findings demonstrate for the first time the expression of TRPC1 and TRPC6 in rat mesenteric artery smooth muscle and the existence in rat isolated mesenteric arterial myocytes of a TRPC-like non-selective cation current activated by alpha1-adrenoceptor stimulation and 1-oleoyl-2-acetyl-sn-glycerol.

Country
United Kingdom
Related Organizations
Keywords

Male, Myocytes, Smooth Muscle, 610, Mesenteric Arteries, Rats, Cations, Receptors, Adrenergic, alpha-1, Animals, Rats, Wistar, Cells, Cultured, TRPC Cation Channels

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!