
arXiv: 2305.05904
Homomorphic encryption is a sophisticated encryption technique that allows computations on encrypted data to be done without the requirement for decryption. This trait makes homomorphic encryption appropriate for safe computation in sensitive data scenarios, such as cloud computing, medical data exchange, and financial transactions. The data is encrypted using a public key in homomorphic encryption, and the calculation is conducted on the encrypted data using an algorithm that retains the encryption. The computed result is then decrypted with a private key to acquire the final output. This abstract notion protects data while allowing complicated computations to be done on the encrypted data, resulting in a secure and efficient approach to analysing sensitive information. This article is intended to give a clear idea about the various fully Homomorphic Encryption Schemes present in the literature and analyse and compare the results of each of these schemes. Further, we also provide applications and open-source tools of homomorphic encryption schemes.
A quick summary of Fully Homomorphic Encryption Schemes along with their background, concepts, applications and open-source libraries
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
