Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Oncologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Oncology
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Oncology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2018
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Oncology
Article . 2018
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modulating ATP binding cassette transporters in papillary renal cell carcinoma type 2 enhances its response to targeted molecular therapy

Authors: Jenni Bartlett; Michelle R Downes; Zsuzsanna Lichner; Fabio Rontondo; Mina Farag; George M. Yousef; George M. Yousef; +5 Authors

Modulating ATP binding cassette transporters in papillary renal cell carcinoma type 2 enhances its response to targeted molecular therapy

Abstract

Papillary renal cell carcinoma (PRCC) is the most common nonclear cell RCCs and is known to comprise two histological subtypes. PRCC2 is more aggressive and is molecularly distinct from the other subtypes. Despite this, PRCCs are treated together as one entity, and they show poor response to the current therapies that do not target pathways implicated in their pathogenesis. We have previously detected ABCC2 (an ABC transporter), VEGF, and mTOR pathways to be enriched in PRCC2. In this study, we assess the therapeutic potential of targeting these pathways in PRCC2. Twenty RCC cell lines from the Cancer Cell Encyclopedia were compared to the Cancer Genome Atlas PRCC cohort (290), to identify representative PRCC2 cell lines. Cell lines were further validated in xenograft models. Selected cell lines were treated in vitro and in vivo (mice models) under five different conditions, untreated, anti‐VEGF (sunitinib), ABCC2 blocker (MK571), mTOR inhibitor (everolimus) and sunitinib + MK571. Sunitinib +ABCC2 blocker group showed a significant response to therapy compared to the other treatment groups both in vitro (P ≤ 0.0001) and in vivo (P = 0.0132). ABCC2 blockage resulted in higher sunitinib uptake, both in vitro (P = 0.0016) and in vivo (P = 0.0031). Everolimus group demonstrated the second best response in vivo. The double‐treatment group showed the highest apoptotic rate and lowest proliferation rate. There is an urgent need for individualized therapies of RCC subtypes that take into account their specific biology. Our results demonstrate that combined targeted therapy with sunitinib and ABCC2 blocker in PRCC2 has therapeutic potential. The results are likewise potentially significant for other ABCC2 high tumors. However, the results are preliminary and clinical trials are needed to confirm these effects in PRCC2 patients.

Keywords

papillary renal cell carcinoma subtypes, renal cell carcinoma cell lines, Biological Transport, Active, Mice, SCID, Immunophenotyping, Cell Line, Tumor, Sunitinib, papillary renal cell carcinoma type 2, Animals, Humans, Molecular Targeted Therapy, Carcinoma, Renal Cell, RC254-282, Research Articles, Cell Nucleus, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, Reproducibility of Results, targeted therapy, Kidney Neoplasms, Multidrug Resistance-Associated Protein 2, Disease Models, Animal, ABC transporters, ATP-Binding Cassette Transporters

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
gold