Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Audio Speech and Language Processing
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

WavJourney: Compositional Audio Creation With Large Language Models

Authors: Xubo Liu; Zhongkai Zhu; Haohe Liu; Yi Yuan; Qiushi Huang; Meng Cui; Jinhua Liang; +4 Authors

WavJourney: Compositional Audio Creation With Large Language Models

Abstract

Despite breakthroughs in audio generation models, their capabilities are often confined to domain-specific conditions such as speech transcriptions and audio captions. However, real-world audio creation aims to generate harmonious audio containing various elements such as speech, music, and sound effects with controllable conditions, which is challenging to address using existing audio generation systems. We present WavJourney, a novel framework that leverages Large Language Models (LLMs) to connect various audio models for audio creation. WavJourney allows users to create storytelling audio content with diverse audio elements simply from textual descriptions. Specifically, given a text instruction, WavJourney first prompts LLMs to generate an audio script that serves as a structured semantic representation of audio elements. The audio script is then converted into a computer program, where each line of the program calls a task-specific audio generation model or computational operation function. The computer program is then executed to obtain a compositional and interpretable solution for audio creation. Experimental results suggest that WavJourney is capable of synthesizing realistic audio aligned with textually-described semantic, spatial and temporal conditions, achieving state-of-the-art results on text-to-audio generation benchmarks. Additionally, we introduce a new multi-genre story benchmark. Subjective evaluations demonstrate the potential of WavJourney in crafting engaging storytelling audio content from text. We further demonstrate that WavJourney can facilitate human-machine co-creation in multi-round dialogues. To foster future research, the code and synthesized audio are available at: https://audio-agi.github.io/WavJourney_demopage/.

GitHub: https://github.com/Audio-AGI/WavJourney

Keywords

FOS: Computer and information sciences, Sound (cs.SD), Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computer Science - Sound, Computer Science - Multimedia, Electrical Engineering and Systems Science - Audio and Speech Processing, Multimedia (cs.MM)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green