Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Medicinearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medicine
Article . 2018 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medicine
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medicine
Article . 2018
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2018
License: CC BY NC ND
Data sources: PubMed Central
versions View all 3 versions
addClaim

Targeted high-throughput sequencing technique for the molecular diagnosis of primary immunodeficiency disorders

Authors: Chi, Zuo Hua; Wei, Wei; Bu, Ding Fang; Li, Huan Huan; Ding, Fei; Zhu, Ping;

Targeted high-throughput sequencing technique for the molecular diagnosis of primary immunodeficiency disorders

Abstract

Abstract The aim of this study was to investigate the usefulness of targeted high-throughput sequencing (HTS) for the molecular diagnosis of primary immunodeficiency diseases (PID). A total of 56 clinically diagnosed or suspected PID patients were divided into 4 groups according to the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015 and their chief clinical presentations. Patients and their biological family members were examined by targeted HTS, which sequenced the exons and ±10 bp flanking introns of 171 PID-related genes panel. All significant variants were confirmed by PCR-Sanger sequencing. Pathogenicity of the variants was evaluated by using bioinformatics. A total of 117 variants in 73 genes were found in 56 patients. Accurate molecular diagnosis of PID was made in 13 (23.2%) patients, and 12 novel mutations were detected in these patients. Twenty-seven patients carried heterozygous variants that are probably pathogenic in ≥2 genes; 16 patients had only 1 missense variant, or had several variants but not >1 variant was deleterious as evaluated by bioinformatics. The meaning of the targeted HTS results of these patients remains to be studied. Targeted HTS can make a precise molecular diagnosis of PID and detect more novel pathogenic mutations. More and more variations with ambiguous significance are discovered and explanation of these variations is a challenge to the clinicians.

Related Organizations
Keywords

Male, Genotype, Immunologic Deficiency Syndromes, High-Throughput Nucleotide Sequencing, Infant, Sequence Analysis, DNA, Phenotype, Child, Preschool, Humans, Female, Genetic Predisposition to Disease, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold