
We consider an architecture of confidential cloud-based control synthesis based on Homomorphic Encryption (HE). Our study is motivated by the recent surge of data-driven control such as deep reinforcement learning, whose heavy computational requirements often necessitate an outsourcing to the third party server. To achieve more flexibility than Partially Homomorphic Encryption (PHE) and less computational overhead than Fully Homomorphic Encryption (FHE), we consider a Reinforcement Learning (RL) architecture over Leveled Homomorphic Encryption (LHE). We first show that the impact of the encryption noise under the Cheon-Kim-Kim-Song (CKKS) encryption scheme on the convergence of the model-based tabular Value Iteration (VI) can be analytically bounded. We also consider secure implementations of TD(0), SARSA(0) and Z-learning algorithms over the CKKS scheme, where we numerically demonstrate that the effects of the encryption noise on these algorithms are also minimal.
8 pages, 7 figures, American Control Conference
FOS: Computer and information sciences, Computer Science - Cryptography and Security, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Cryptography and Security (cs.CR)
FOS: Computer and information sciences, Computer Science - Cryptography and Security, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Cryptography and Security (cs.CR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
