Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research in Veterinary Science
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Determination of equine deep digital flexor muscle volume based on distances between anatomical landmarks

Authors: Hardeman, L C; van der Meij, B R; Lamers, A A H; van der Kolk, J H; Back, W; Wijnberg, I D;

Determination of equine deep digital flexor muscle volume based on distances between anatomical landmarks

Abstract

In equine medicine the use of Botox® is experimental. Dosages are determined from human treatment-protocols and limited numbers of equine studies. Determination of target-muscle volume can be helpful to extrapolate human dosages. The aim of the study was to calculate a formula enabling the estimation of the deep digital flexor muscle (DDFM) volume based on distances between anatomical landmarks. Nineteen cadaveric limbs were collected and distance A (top of olecranon to Os carpi accessorium) and B (circumference of limb) were measured. Converting mathematical formulas, C was calculated: π × (((0.5B)/π)(2)) × A. DDFM volume was determined by water displacement. Linear Regression Analysis was used to analyse data. The line best fitting the observed points was: Ln(volume[ml]) = -1.89 + 0.98 × Ln(value C[cm(3)]). Correlation was highest when natural logarithm was applied to both variables and was 0.97. The calculated formula enables estimating DDFM volume of a living horse. This estimated volume can be useful to apply human Botox® treatment-protocols.

Related Organizations
Keywords

Dose-Response Relationship, Drug, Extremities, Ulna, Organ Size, SDG 3 - Good Health and Well-being, Cadaver, Animals, Humans, Horses, Botulinum Toxins, Type A, Olecranon Process, Muscle, Skeletal, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!