Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Opin visindi
Article . 2019
Data sources: Opin visindi
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Solid Earth
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High‐Temperature Deformation Behavior of Synthetic Polycrystalline Magnetite

Authors: J. L. Till; E. Rybacki; L.F.G. Morales; M. Naumann;

High‐Temperature Deformation Behavior of Synthetic Polycrystalline Magnetite

Abstract

AbstractWe performed a series of deformation experiments on synthetic magnetite aggregates to characterize the high‐temperature rheological behavior of this mineral under nominally dry and hydrous conditions. Grain growth laws for magnetite were additionally determined from a series of static annealing tests. Synthetic magnetite aggregates were formed by hot isostatic pressing of fine‐grained magnetite powder at 1,100 °C temperature and 300‐MPa confining pressure for 20 hr, resulting in polycrystalline material with a mean grain size around 40 μm and containing 2–4% porosity. Samples were subsequently deformed to axial strains of up to 10% under constant load conditions at temperatures between 900 and 1,150 °C in a triaxial deformation apparatus under 300‐MPa confining pressure at applied stresses in the range of 8–385 MPa or in a uniaxial creep rig at atmospheric pressure with stresses of 1–15 MPa. The aggregates exhibit typical power‐law creep behavior with a mean stress exponent of 3 at high stresses, indicating a dislocation creep mechanism and a transition to near‐Newtonian creep with a mean stress exponent of 1.1 at lower stresses. The presence of water in the magnetite samples resulted in significantly enhanced static grain growth and strain rates. Best‐fit flow laws to the data indicate activation energies of around 460 and 310 kJ/mol for dislocation and diffusion creep of nominally dry magnetite, respectively. Based on the experimentally determined flow laws, magnetite is predicted to be weaker than most major silicate phases in relatively dry rocks such as oceanic gabbros during high‐temperature crustal deformation.

Countries
Iceland, Germany
Keywords

Magnetite, Oxide minerals, Creep equations, Jarðvísindi, Experimental deformation, Flow laws, Jarðefni, Bergfræði

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Green
bronze