
arXiv: 2011.04474
It is known in the literature that local minimizers of mathematical programs with complementarity constraints (MPCCs) are so-called M-stationary points, if a weak MPCC-tailored Guignard constraint qualification (called MPCC-GCQ) holds. In this paper we present a new elementary proof for this result. Our proof is significantly simpler than existing proofs and does not rely on deeper technical theory such as calculus rules for limiting normal cones. A crucial ingredient is a proof of a (to the best of our knowledge previously open) conjecture, which was formulated in a Diploma thesis by Schinabeck.
90C33 (Primary) 90C30 (Secondary), Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
90C33 (Primary) 90C30 (Secondary), Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
