
pmid: 17570221
The transcription factor nuclear factor (NF)-kappaB plays a critical role in mediating survival of hepatocytes in response to tumor necrosis factor (TNF)-alpha during development because mice deficient for the NF-kappaB subunit RelA/p65 die in utero because of TNF-induced liver apoptosis. For the adult liver, conflicting concepts exist as to whether soluble TNF can trigger apoptosis when NF-kappaB activation is impaired. By creating a mouse model in which the transactivating NF-kappaB subunit RelA/p65 can be genetically inactivated in hepatocytes using the Cre/lox system, we sought to clarify the role of NF-kappaB in TNF-mediated hepatocyte apoptosis.Deletion of RelA/p65 in the liver was achieved using an inducible conditional knockout system (rela(F/F)MxCre mice) or, hepatocyte-specifically, using a developmental conditional knockout system (rela(F/F)AlbCre mice).Disruption of RelA/p65 rendered mice sensitive to lethal liver injury upon TNF administration. Primary RelA/p65-deficient hepatocytes showed no NF-kappaB activation and undergo rapid apoptosis after TNF treatment. In contrast, hepatocytes deficient for I kappa B-kinase beta (IKK beta), displayed residual NF-kappaB activity and consecutively only mild apoptosis in response to TNF. TNF-induced apoptosis in RelA/p65-deficient hepatocytes was accompanied by prolonged activation of c-jun activating kinase (JNK) and rapid, largely proteasome-independent elimination of the long splice form of the antiapoptotic cellular FLICE inhibitor protein (c-FLIP(L)). Gene silencing of caspase-8, caspase-inhibitors, inhibition of JNK, or administration of antioxidants inhibited apoptosis and elimination of c-FLIP(L).RelA/p65 is essential for TNF-induced NF-kappaB activation in adult hepatocytes. Genetic deletion of a functional RelA/p65 sensitizes these cells to apoptosis in response to soluble TNF in vivo and in vitro.
Mice, Knockout, Caspase 8, Tumor Necrosis Factor-alpha, CASP8 and FADD-Like Apoptosis Regulating Protein, JNK Mitogen-Activated Protein Kinases, NF-kappa B, Butylated Hydroxyanisole, Apoptosis, In Vitro Techniques, Antioxidants, I-kappa B Kinase, Enzyme Activation, Ligases, Mice, Hepatocytes, Animals, Gene Silencing, Chemical and Drug Induced Liver Injury, Cells, Cultured
Mice, Knockout, Caspase 8, Tumor Necrosis Factor-alpha, CASP8 and FADD-Like Apoptosis Regulating Protein, JNK Mitogen-Activated Protein Kinases, NF-kappa B, Butylated Hydroxyanisole, Apoptosis, In Vitro Techniques, Antioxidants, I-kappa B Kinase, Enzyme Activation, Ligases, Mice, Hepatocytes, Animals, Gene Silencing, Chemical and Drug Induced Liver Injury, Cells, Cultured
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 91 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
