
Transgenic animals are powerful tools to study gene function invivo. Here we characterize several transgenic zebrafish lines that express green fluorescent protein (GFP) under the control of the LCR(RH2)-RH2-1 or LCR(RH2)-RH2-2 green opsin regulatory elements. Using confocal immunomicroscopy, stereo-fluorescence microscopy, and Western blotting, we show that the Tg(LCR(RH2)-RH2-1:GFP)(pt112) and Tg(LCR(RH2)-RH2-2:GFP)(pt115) transgenic zebrafish lines express GFP in the pineal gland and certain types of photoreceptors. In addition, some of these lines also express GFP in the hatching gland, optic tectum, or olfactory bulb. Some of the expression patterns differ significantly from previously published similar transgenic fish lines, making them useful tools for studying the development of the corresponding tissues and organs. In addition, the variations of GFP expression among different lines corroborate the notion that transgenic expression is often subjected to position effect, thus emphasizing the need for careful verification of expression patterns when transgenic animal models are utilized for research.
Superior Colliculi, Green Fluorescent Proteins, Rod Opsins, Membrane Proteins, Zebrafish Proteins, Olfactory Bulb, Pineal Gland, Retina, Animals, Genetically Modified, Animals, Tissue Distribution, Zebrafish, Photoreceptor Cells, Vertebrate
Superior Colliculi, Green Fluorescent Proteins, Rod Opsins, Membrane Proteins, Zebrafish Proteins, Olfactory Bulb, Pineal Gland, Retina, Animals, Genetically Modified, Animals, Tissue Distribution, Zebrafish, Photoreceptor Cells, Vertebrate
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
