Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mesenchymal Glucocorticoid Receptor Regulates the Development of Multiple Cell Layers of the Mouse Lung

Authors: A. Daniel Bird; Yuen L Choo; Annie R A McDougall; Tim J Cole; Stuart B. Hooper;

Mesenchymal Glucocorticoid Receptor Regulates the Development of Multiple Cell Layers of the Mouse Lung

Abstract

Endogenous glucocorticoid (GC) hormones, signaling via the GC receptor (GR), are essential for normal lung development, and synthetic GCs are routinely used to treat respiratory disorders of very preterm babies. Germline GR knockout (GR(-/-)) mice show immature lung morphology and severe lung cellular hyperplasia during embryogenesis and die at birth due to respiratory failure. Two recent studies have reported contradictory results regarding the necessity for GR expression in specific lung germ layers during respiratory maturation. We further investigate in detail the lung phenotype in mice with a conditional deletion of GR in the endothelium, mesenchyme, and lung epithelium. We show that loss of GR in the mesenchyme alone produces a retarded lung phenotype almost identical to that of germline GR(-/-) mice, including severe postnatal lethality and lung cell hyperplasia. Loss of GR in lung epithelial cells and the endothelium had no gross effect on survival or lung morphology, but loss of epithelial GR caused increased cell proliferation in multiple compartments. Mesenchymal GR loss also produced increased epithelial cell proliferation, implying the existence of GC-regulated germ layer cross-talk. Protein levels of GR-mediated cell cycle regulators, including the cyclin-dependent kinase inhibitor p21(CIP1) and the growth factor midkine, were unaffected by mesenchymal GR deletion, yet expression of the extracellular matrix proteoglycan versican was up-regulated in the distal lung on loss of mesenchymal GR. These results show that GR-mediated signaling from the mesenchyme regulates respiratory maturation and ultimately survival at birth and that a key GR-repressed transcriptional target in lung mesenchymal cells is versican.

Keywords

Cyclin-Dependent Kinase Inhibitor p21, Midkine, Gene Expression Regulation, Developmental, Mice, Transgenic, Epithelium, Mesoderm, Disease Models, Animal, Mice, Receptors, Glucocorticoid, Animals, Cytokines, Glucocorticoids, Lung, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?