Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biophysical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article . 2015
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Journal
Article . 2015 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Superresolution Microscopy Reveals Sodium Channel Localization within Intercalated Disk Microdomains: Implications for Ephaptic Coupling

Authors: Veeraraghavan, Rengasayee; Lin, Joyce; Keener, James P.; Poelzing, Steven; Gourdie, Robert G.;

Superresolution Microscopy Reveals Sodium Channel Localization within Intercalated Disk Microdomains: Implications for Ephaptic Coupling

Abstract

Pore-forming (Nav1.5) and auxiliary (β1; SCN1b) subunits of cardiac sodium channels are enriched at the cardiomyocyte intercalated disk (ID). Mathematical models suggest that this may facilitate conduction via ephaptic mechanisms. We previously demonstrated anisotropic conduction slowing during acute interstitial edema (AIE), possibly due to weakened ephaptic coupling. Here we assessed Nav1.5 and β1 localization to ID microdomains using electron microscopy (EM) and super-resolution microscopy (gSTED, STORM) and used optical mapping and computer modeling to investigate the implications for ephaptic conduction in the heart. gSTED and STORM revealed Nav1.5 and β1 enrichment within ID regions not containing dense clusters of Cx43 and N-Cadherin. Notably, both were identified within the perinexus, a microdomain surrounding Cx43 gap junctions. Overall, 22% of Nav1.5 was located within perinexal regions while only 2% was within Cx43 clusters. EM revealed closer membrane apposition at perinexal ( 10nm) under control conditions. AIE increased intermembrane distance at perinexal, but not at non-perinexal sites. Functionally, this correlated with decreased transverse conduction velocity (CV-T; 15.2±0.3 vs. 19.6±0.1cm/s) and increased anisotropic ratio (AR; 3.0±0.2 vs. 2.8±0.1) relative to control, in perfused guinea pig ventricles. Next, we investigated AIE effects on Nav1.5 function in conduction. Nav1.5 blockade (0.5 µM flecainide) by itself decreased CV (18%) without changing AR. However, Nav1.5 inhibition during AIE preferentially decreased CV-T (13.0±0.6cm/s), increased AR (3.3±0.2) and increased spontaneous arrhythmias (7/9 vs. 4/11) compared to AIE alone. Notably, only a computer model including ephaptic coupling and the ID localization of Nav1.5 could recapitulate these results. In summary, sodium channel complexes localized to ID microdomains such as the perinexus may enable ephaptic conduction in the heart. Further, Nav1.5 functional availability and perinexal membrane spacing emerge as novel determinants of anisotropic conduction.

Related Organizations
Keywords

Biophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid