Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Physical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Physical Journal C: Particles and Fields
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Non-Abelian T-duality of $$AdS_{d\le 3}$$ families by Poisson-Lie T-duality

Authors: Eghbali, Ali; Naderi, Reza; Rezaei-Aghdam, Adel;

Non-Abelian T-duality of $$AdS_{d\le 3}$$ families by Poisson-Lie T-duality

Abstract

AbstractWe proceed to investigate the non-Abelian T-duality of $$AdS_{2}$$ A d S 2 , $$AdS_{2}\times S^1$$ A d S 2 × S 1 and $$AdS_{3}$$ A d S 3 physical backgrounds, as well as the metric of the analytic continuation of $$AdS_{2}$$ A d S 2 from the point of view of Poisson-Lie (PL) T-duality. To this end, we reconstruct these metrics of the AdS families as backgrounds of non-linear $$\sigma $$ σ -models on two- and three-dimensional Lie groups. By considering the Killing vectors of these metrics and by taking into account the fact that the subgroups of isometry Lie group of the metrics can be taken as one of the subgroups of the Drinfeld double (with Abelian duals) we look up the PL T-duality. To construct the dualizable metrics by the PL T-duality we find all subalgebras of Killing vectors that generate subgroup of isometries which acts freely and transitively on the manifolds defined by aforementioned AdS families. We then obtain the dual backgrounds for these families of AdS in such a way that we apply the usual rules of PL T-duality without further corrections. We have also investigated the conformal invariance conditions of the original backgrounds (AdS families) and their dual counterparts. Finally, by using the T-duality rules proposed by Kaloper and Meissner (KM) we calculate the Abelian T-duals of BTZ black hole up to two-loop by dualizing on the coordinates $$ \varphi $$ φ and t. When the dualizing is implemented by the shift of direction $$\varphi $$ φ , we show that the horizons and singularity of the dual spacetime are the same as in charged black string derived by Horne and Horowitz without $$\alpha '$$ α ′ -corrections, whereas in dualizing on the coordinate t we find a new three-dimensional black string whose structure and asymptotic nature are clearly determined. For this case, we show that the T-duality transformation changes the asymptotic behavior from $$AdS_3$$ A d S 3 to flat.

Related Organizations
Keywords

High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold