Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Botany
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV kelch protein 2) in Arabidopsis

Authors: Masahiro, Yasuhara; Shunya, Mitsui; Hiroshi, Hirano; Rieko, Takanabe; Yoko, Tokioka; Norihisa, Ihara; Akihiro, Komatsu; +3 Authors

Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV kelch protein 2) in Arabidopsis

Abstract

The ADO/FKF/LKP/ZTL family of proteins of Arabidopsis thaliana Heynh. have a LOV domain, an F-box motif, and a kelch repeat region. LKP2 is a member of this family and functions either within or very close to the circadian oscillator in Arabidopsis. Promoter-GUS fusion studies revealed that the LKP2 gene was highly active in rosette leaves. In CaMV 35S:LKP2-GFP plants, GFP-associated fluorescence was detected in nuclei, suggesting that LKP2 is a nuclear protein. Yeast two-hybrid analysis demonstrated that LKP2 interacted with some Arabidopsis Skp1-like proteins (ASK), as do other ADO/FKF/LKP/ZTL family proteins, suggesting that LKP2 can form an SCF (Skp1-Cullin-F-box protein) complex that functions as a ubiquitin E3 ligase. LKP2 interacted not only with itself but also with other members of the family, LKP1 and FKF1. The two-hybrid analysis also demonstrated that LKP2 interacted with TOC1, a clock component, but not with CCA1 or LHY, negative regulators of TOC1 gene expression. The LOV domain of LKP2 was shown to be necessary and sufficient for the interaction with TOC1. An interaction between LKP2 and APRR5, a paralogue of TOC1, was also observed, but LKP2 did not interact with APRR3, APRR7, or APRR9, other paralogues of TOC1.

Related Organizations
Keywords

DNA, Plant, Arabidopsis Proteins, Biological Clocks, Arabidopsis, Flowers, Saccharomyces cerevisiae, Cloning, Molecular, Protein Serine-Threonine Kinases, Circadian Rhythm, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 10%
Top 10%
Top 10%
bronze