Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oncogene
Article . 2004
versions View all 2 versions
addClaim

Expression of an engrailed-LMO4 fusion protein in mammary epithelial cells inhibits mammary gland development in mice

Authors: Ning, Wang; Elena, Kudryavtseva; Irene L, Ch'en; Joshua, McCormick; Tod M, Sugihara; Rachel, Ruiz; Bogi, Andersen;

Expression of an engrailed-LMO4 fusion protein in mammary epithelial cells inhibits mammary gland development in mice

Abstract

LIM domain factors and associated cofactors are important developmental regulators in pattern formation and organogenesis. In addition, overexpression of two LIM-only factors (LMOs) causes acute lymphocytic leukemia. The more recently discovered LMO factor LMO4 is highly expressed in proliferating epithelial cells, and frequently overexpressed in breast carcinoma. Here we show that while LMO4 is expressed throughout mammary gland development, it is dramatically upregulated in mammary epithelial cells during midpregnancy. The LMO coactivator Clim2/Ldb1/NLI showed a similar expression pattern, consistent with the idea that LMO4 and Clim2 act as a complex in mammary epithelial cells. In MCF-7 cells, LMO4 transcripts were upregulated by heregulin, an activator of ErbB receptors that are known to be important in mammary gland development and breast cancer. To test the hypothesis that LMO4 plays roles in mammary gland development, we created an engrailed-LMO4 fusion protein. This fusion protein maintains the ability to interact with Clim2, but acts as a dominant repressor of both basal and activated transcription when recruited to a DNA-regulatory region. When the engrailed-LMO4 fusion protein was expressed under control of the MMTV promoter in transgenic mice, both ductular development in virgin mice and alveolar development in pregnant mice were inhibited. These results suggest that LMO4 plays a role in promoting mammary gland development.

Keywords

Homeodomain Proteins, Models, Genetic, Recombinant Fusion Proteins, Gene Expression Regulation, Developmental, Breast Neoplasms, Mice, Transgenic, LIM Domain Proteins, DNA-Binding Proteins, Repressor Proteins, Mice, Mammary Glands, Animal, Pregnancy, Cell Line, Tumor, Trans-Activators, Animals, Drosophila Proteins, Humans, Female, Promoter Regions, Genetic, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Average
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research