Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 1993 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Cell
Article . 1994
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modified hippocampal long-term potentiation in PKCγ-mutant mice

Authors: A, Abeliovich; C, Chen; Y, Goda; A J, Silva; C F, Stevens; S, Tonegawa;

Modified hippocampal long-term potentiation in PKCγ-mutant mice

Abstract

Calcium-phospholipid-dependent protein kinase (PKC) has long been suggested to play an important role in modulating synaptic efficacy. We have created a strain of mice that lacks the gamma subtype of PKC to evaluate the significance of this brain-specific PKC isozyme in synaptic plasticity. Mutant mice are viable, develop normally, and have synaptic transmission that is indistinguishable from wild-type mice. Long-term potentiation (LTP), however, is greatly diminished in mutant animals, while two other forms of synaptic plasticity, long-term depression and paired-pulse facilitation, are normal. Surprisingly, when tetanus to evoke LTP was preceded by a low frequency stimulation, mutant animals displayed apparently normal LTP. We propose that PKC gamma is not part of the molecular machinery that produces LTP but is a key regulatory component.

Keywords

Mice, Knockout, Neuronal Plasticity, Base Sequence, Long-Term Potentiation, Molecular Sequence Data, Hippocampus, Receptors, N-Methyl-D-Aspartate, Synaptic Transmission, Membrane Potentials, Mice, Animals, Ion Channel Gating, Protein Kinase C, DNA Primers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    531
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
531
Top 10%
Top 1%
Top 0.1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!