Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

KernelGen -- The Design and Implementation of a Next Generation Compiler Platform for Accelerating Numerical Models on GPUs

Authors: Dmitry Mikushin; Nikolay Likhogrud; Eddy Z. Zhang; Christopher Bergstrom;

KernelGen -- The Design and Implementation of a Next Generation Compiler Platform for Accelerating Numerical Models on GPUs

Abstract

GPUs are becoming pervasive in scientific computing. Originally served as peripheral accelerators, now they are gradually turning into central computing nodes. However, most current directive-based approaches for parallelizing sequential legacy code such as OpenACC and HMPP simply off-load "hot" CPU code onto GPUs, entailing a lot of limitations such as unsupported external calls and coarse-grained data dependence analysis. This paper introduces KernelGen, which is a parallelization framework with a robust parallelism detection mechanism and a novel GPU-centric execution model. KernelGen supports the major scientific programming languages including C and Fortran, and has multiple backends that can generate target code for both X86 CPUs and NVIDIA GPUs. The efficiency of KernelGen has been demonstrated by the performance improvement up to 5.4× compared with three major commercial OpenACC compilers over a benchmark suite of numerical kernels.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!