Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Information Forensics and Security
Article . 2013 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Capacity results and super-activation for wiretap channels with active wiretappers

Authors: Holger Boche; Rafael F. Schaefer;

Capacity results and super-activation for wiretap channels with active wiretappers

Abstract

The classical wiretap channel models secure communication in the presence of a nonlegitimate wiretapper who has to be kept ignorant. Traditionally, the wiretapper is passive in the sense that he only tries to eavesdrop the communication using his received channel output. In this paper, more powerful active wiretappers are studied. In addition to eavesdropping, these wiretappers are able to influence the communication conditions of all users by controlling the corresponding channel states. Since legitimate transmitters and receivers do not know the actual channel realization or the wiretapper's strategy of influencing the channel states, they are confronted with arbitrarily varying channel (AVC) conditions. The corresponding secure communication scenario is, therefore, given by the arbitrarily varying wiretap channel (AVWC). In the context of AVCs, common randomness (CR) has been shown to be an important resource for establishing reliable communication, in particular, if the AVC is symmetrizable. But availability of CR also affects the strategy space of an active wiretapper as he may or may not exploit the common randomness for selecting the channel states. Several secrecy capacity results are derived for the AVWC. In particular, the CR-assisted secrecy capacity of the AVWC with an active wiretapper exploiting CR is established and analyzed in detail. Finally, it is demonstrated for active wiretappers how two orthogonal AVWCs, each useless for transmission of secure messages, can be super-activated to a useful channel allowing for secure communication at nonzero secrecy rates. To the best of our knowledge, this is not possible for passive wiretappers and, further, provides the first example of such super-activation, which has been expected to appear only in the area of quantum communication. Such knowledge is particularly important as it provides valuable insights for the design and the medium access control of future wireless communication systems.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
bronze