Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/357985...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
VTechWorks
Other literature type . 2023
License: CC BY
Data sources: VTechWorks
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Securing Container-based Clouds with Syscall-aware Scheduling

Authors: Michael V. Le; Salman Ahmed; Dan Williams; Hani Jamjoom;

Securing Container-based Clouds with Syscall-aware Scheduling

Abstract

Container-based clouds—in which containers are the basic unit of isolation—face security concerns because, unlike Virtual Machines, containers directly interface with the underlying highly privileged kernel through the wide and vulnerable system call interface. Regardless of whether a container itself requires dangerous system calls, a compromised or malicious container sharing the host (a bad neighbor) can compromise the host kernel using a vulnerable syscall, thereby compromising all other containers sharing the host. In this paper, rather than attempting to eliminate host compromise, we limit the effectiveness of attacks by bad neighbors to a subset of the cluster. To do this, we propose a new metric dubbed Extraneous System call Exposure (ExS). Scheduling containers to minimize ExS reduces the number of nodes that expose a vulnerable system call and as a result the number of affected containers in the cluster. Experimenting with 42 popular containers on SySched, our greedy scheduler implementation in Kubernetes, we demonstrate that SySched can reduce up to 46% more victim nodes and up to 48% more victim containers compared to the Kubernetes default scheduling while also reducing overall host attack surface by 20%.

Published version

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
hybrid