Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Forkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth

Authors: Amy Sasman; Kathryn M. Schultz; Tsutomu Kume; Pedro M. Lacal; Hardeep Singh; Douglas W. Losordo; Ting Liu; +3 Authors

Forkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth

Abstract

Normal vision requires the precise control of vascular growth to maintain corneal transparency. Here we provide evidence for a unique mechanism by which the Forkhead box transcription factor FoxC1 regulates corneal vascular development. Murine Foxc1 is essential for development of the ocular anterior segment, and in humans, mutations have been identified in Axenfeld–Rieger syndrome, a disorder characterized by anterior segment dysgenesis. We show that FOXC1 mutations also lead to corneal angiogenesis, and that mice homozygous for either a global ( Foxc1 −/− ) or neural crest (NC)-specific (NC- Foxc1 −/− ) null mutation display excessive growth of corneal blood and lymphatic vessels. This is associated with disorganization of the extracellular matrix and increased expression of multiple matrix metalloproteinases. Heterozygous mutants ( Foxc1 +/− and NC- Foxc1 +/− ) exhibit milder phenotypes, such as disrupted limbal vasculature. Moreover, environmental exposure to corneal injury significantly increases growth of both blood and lymphatic vessels in both Foxc1 +/− and NC- Foxc1 +/− mice compared with controls. Notably, this amplification of the angiogenic response is abolished by inhibition of VEGF receptor 2. Collectively, these findings identify a role for FoxC1 in inhibiting corneal angiogenesis, thereby maintaining corneal transparency by regulating VEGF signaling.

Keywords

Heterozygote, Neovascularization, Pathologic, Corneal Stroma, Eye Diseases, Hereditary, Forkhead Transcription Factors, Pupil, Haploinsufficiency, Alkalies, Matrix Metalloproteinases, Cornea, Mice, Phenotype, Anterior Eye Segment, Neural Crest, Mutation, Animals, Blood Vessels, Eye Abnormalities, Lymphangiogenesis, Burns

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 10%
Top 10%
Top 10%
bronze