Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Brain Rese...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Brain Research
Article . 1998 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Altered gene expression for calpain/calpastatin system in motor neuron degeneration (Mnd) mutant mouse brain and spinal cord

Authors: J, Li; R, Nixon; A, Messer; S, Berman; S, Bursztajn;

Altered gene expression for calpain/calpastatin system in motor neuron degeneration (Mnd) mutant mouse brain and spinal cord

Abstract

The calcium-activated neutral proteases (CANP, calpains) have been implicated in both acute and chronic neurodegenerative processes. In the present study, we analyzed the in situ mRNA expression of calpain I and II and their endogenous inhibitor, calpastatin, in the motor neuron degeneration (Mnd) mutant mouse, which exhibits progressive dysfunction of the spinal cord and brain. As the disease progresses, the mutants show increasingly pronounced motor abnormalities which coincide with swelling of the spinal motor neurons, neocortex, hippocampal CA regions and cerebellar Purkinje cells. In situ hybridization studies show that the Mnd mice have a significantly higher level of calpain I, calpain II and calpastatin than the congenic controls in the following brain regions and cell types: hippocampal CA3 region, pyramidal cells, cerebellar Purkinje cells and spinal cord motor neurons. However, no differences in calpain or calpastatin mRNA levels are observed in glial and cerebellar granule cells of Mnd and control mice. Western blots and competitive RT-PCR analyses of brain and spinal cord homogenates are confirmative. Such altered gene expression in specific cell types of brain and spinal cord suggests the involvement of the calpain/calpastatin system.

Related Organizations
Keywords

Male, Motor Neurons, Neurons, Calpain, Calcium-Binding Proteins, Brain, Polymerase Chain Reaction, Mice, Mutant Strains, Mice, Purkinje Cells, Gene Expression Regulation, Spinal Cord, Organ Specificity, Nerve Degeneration, Animals, Female, Neuroglia, In Situ Hybridization, DNA Primers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!