Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal of Epidemiology
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Variation Within DNA Repair Pathway Genes and Risk of Multiple Sclerosis

Authors: Stephen Sawcer; Lisa F. Barcellos; Philip L. De Jager; John D. Rioux; Alastair Compston; Jorge R. Oksenberg; Stephen L. Hauser; +9 Authors

Variation Within DNA Repair Pathway Genes and Risk of Multiple Sclerosis

Abstract

Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system with a prominent genetic component. The primary genetic risk factor is the human leukocyte antigen (HLA)-DRB1*1501 allele; however, much of the remaining genetic contribution to MS has not been elucidated. The authors investigated the relation between variation in DNA repair pathway genes and risk of MS. Single-locus association testing, epistatic tests of interactions, logistic regression modeling, and nonparametric Random Forests analyses were performed by using genotypes from 1,343 MS cases and 1,379 healthy controls of European ancestry. A total of 485 single nucleotide polymorphisms within 72 genes related to DNA repair pathways were investigated, including base excision repair, nucleotide excision repair, and double-strand breaks repair. A single nucleotide polymorphism variant within the general transcription factor IIH, polypeptide 4 gene, GTF2H4, on chromosome 6p21.33 was significantly associated with MS (odds ratio = 0.7, P = 3.5 x 10(-5)) after accounting for multiple testing and was not due to linkage disequilibrium with HLA-DRB1*1501. Although other candidate genes examined here warrant further follow-up studies, collectively, these results derived from a well-powered study do not support a strong role for common variation within DNA repair pathway genes in MS.

Keywords

Multiple Sclerosis, DNA Repair, Genotype, Humans, Genetic Predisposition to Disease, Polymorphism, Single Nucleotide, White People, Genome-Wide Association Study

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
bronze