<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Polycomb-group response elements (PREs) are DNA elements through which the Polycomb-group (PcG) of transcriptional repressors act. Many of the PcG proteins are associated with two protein complexes that repress gene expression by modifying chromatin. Both of these protein complexes specifically associate with PREs in vivo, however, it is not known how they are recruited or held at the PRE. PREs are complex elements, made up of binding sites for many proteins. Our laboratory has been working to define all the sequences and DNA binding proteins required for the activity of a 181 bp PRE from the Drosophila engrailed gene. Here we show that one of the sites necessary for PRE activity, Site 2, can be bound by members of the Sp1/KLF family of zinc finger proteins. There are 10 Sp1/KLF family members in Drosophila, and nine of them bind to Site 2. We derive a consensus binding site for the Sp1/KLF Drosophila family members and show that this consensus sequence is present in most of the molecularly characterized PREs. These data suggest that one or more Sp1/KLF family members play a role in PRE function in Drosophila.
Homeodomain Proteins, Polycomb Repressive Complex 1, Binding Sites, Base Sequence, Sp1 Transcription Factor, Molecular Sequence Data, Zinc Fingers, Response Elements, Repressor Proteins, Consensus Sequence, Animals, Drosophila Proteins, Drosophila, Amino Acid Sequence, Molecular Biology, Sequence Alignment, Transcription Factors
Homeodomain Proteins, Polycomb Repressive Complex 1, Binding Sites, Base Sequence, Sp1 Transcription Factor, Molecular Sequence Data, Zinc Fingers, Response Elements, Repressor Proteins, Consensus Sequence, Animals, Drosophila Proteins, Drosophila, Amino Acid Sequence, Molecular Biology, Sequence Alignment, Transcription Factors
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 71 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |