Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MCC950 Reduces Neuronal Apoptosis in Spinal Cord Injury in Mice

Authors: Ning, He; Xiaohe, Zheng; Teng, He; Gerong, Shen; Kunyu, Wang; Jue, Hu; Mingzhi, Zheng; +6 Authors

MCC950 Reduces Neuronal Apoptosis in Spinal Cord Injury in Mice

Abstract

Background: Traumatic Spinal Cord Injury (SCI) is a severe condition usually accompanied by an inflammatory process that gives rise to uncontrolled local apoptosis and a subsequent unfavorable prognosis. One reason for this unfavorable outcome could be the activation of the NLRP3 inflammasome. Objective: MCC950 is a specific inhibitor of NLRP3 that further inhibits the formation of the NLRP3 inflammasome. The purpose of this study was to determine whether the NLRP3 inflammasome was associated with the severity of local apoptosis and whether MCC950 could prevent neuronal apoptosis following SCI. Methods: In this study, primary cortical neurons were cultured in vitro. With or without pretreatment/ posttreatment with MCC950, neurons were subjected to Oxygen-Glucose Deprivation (OGD) for 2 h and then reperfusion for 20 h. Immunofluorescence was used to determine the expression of NLRP3, ASC, and cleaved caspase-1 in neurons. In vivo, SCI model mice were established with a 5 g weight-drop method. MCC950 was intraperitoneally injected at 0, 2, 4, 6, 8, 10, and 12 days after SCI. Basso Mouse Scale (BMS) scores and footprint assays were used to assess motor function. Paw withdrawal threshold and tail-flick latency were used to assess somatosensory function. H&E, Nissl, and TUNEL staining were used to measure histological changes and apoptosis at 3 days after SCI, and scar formation was observed by Masson staining and GFAP immunohistochemical analysis at 28 days after SCI. Results: Immunofluorescence analysis confirmed that MCC950 inhibited OGD-induced activation of the NLRP3 inflammasome in neurons. Behavioral tests, Masson staining, and GFAP immunohistochemical analysis showed that MCC950-treated mice had improved neuronal functional recovery and reduced scar formation at 28 days after SCI. H&E, Nissl, and TUNEL staining confirmed that there were more living neurons and fewer apoptotic neurons in MCC950-treated mice than control mice at 3 days after SCI. Conclusion: These results reveal that MCC950 exerts neuroprotective effects by reducing neuronal apoptosis, preserving the survival of the remaining neurons, attenuating the severity of the damage, and promoting the recovery of motor function after SCI.

Related Organizations
Keywords

Inflammation, Male, Neurons, Sulfonamides, Inflammasomes, Apoptosis, Recovery of Function, Mice, Neuroprotective Agents, Indenes, NLR Family, Pyrin Domain-Containing 3 Protein, In Situ Nick-End Labeling, Animals, Furans, Spinal Cord Injuries

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!