
Arylamine N-acetyltransferase 1 and 2 exhibit single nucleotide polymorphisms in human populations that modify drug and carcinogen metabolism. This paper updates the identity, location and functional effects of these single nucleotide polymorphisms and then follows with emerging concepts for understanding why pharmacogenetic findings may not be replicated consistently. Using this paradigm as an example, laboratory-based mechanistic analyses can reveal complexities such that genetic polymorphisms become biologically and medically relevant when confounding factors are more fully understood and considered. As medical care moves to a more personalized approach, the implications of these confounding factors will be important in understanding the complexities of personalized medicine.
Isoenzymes, Arylamine N-Acetyltransferase, Pharmacogenetics, Animals, Humans, Precision Medicine, Polymorphism, Single Nucleotide
Isoenzymes, Arylamine N-Acetyltransferase, Pharmacogenetics, Animals, Humans, Precision Medicine, Polymorphism, Single Nucleotide
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 126 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
