
doi: 10.1007/bf01600331
The quotient-difference (=QD) algorithm developed by the author may be considered as an extension ofBernoulli's method for solving algebraic equations. WhereasBernoulli's method gives the dominant root as the limit of a sequence of quotientsq 1 () =s 1 (+1) /s 1 () formed from a certain numerical sequences 1 () , the QD-algorithm gives (under certain conditions) all the rootsλ σ as the limits of similiar quotient sequencesq σ () =s σ (+1) /s σ () . Close relationship exists between this method and the theory of continued fractions. In fact the QD-algorithm permits developing a function given in the form of a power series into a continued fraction in a remarkably simple manner. In this paper only the theoretical aspects of the method are discussed. Practical applications will be discussed later.
numerical analysis, quotient-difference algorithm, continued fractions, QD-algorithm, Numerical analysis
numerical analysis, quotient-difference algorithm, continued fractions, QD-algorithm, Numerical analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 119 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
