
AbstractThe ability to predict the onset of labour is seen to be an important tool in a clinical setting. Magnetomyography has shown promise in the area of labour imminency prediction, but its clinical application remains limited due to high resource consumption associated with its broad number of channels. In this study, five electrode channels, which account for 3.3% of the total, are used alongside a novel signal decomposition algorithm and low complexity classifiers (logistic regression and linear‐SVM) to classify between labour imminency due within 0 to 48 hours and >48 hours. The results suggest that the parsimonious representation comprising of five electrode channels and novel signal decomposition method alongside the candidate classifiers could allow for greater affordability and hence clinical viability of the magnetomyography‐based prediction model, which carries a good degree of model interpretability. The results showed around a 20% increase on average for the novel decomposition method, alongside a reduced group of features across the various classification metrics considered for both the logistic regression and support vector machine.
kernel methods, obstetrics, cybernetics, optimisation, logistic regression, Electronic computers. Computer science, QA75.5-76.95, preterm
kernel methods, obstetrics, cybernetics, optimisation, logistic regression, Electronic computers. Computer science, QA75.5-76.95, preterm
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
