
pmid: 9693133
ABSTRACT The Drosophila ventral nerve cord derives from a stereotype population of about 30 neural stem cells, the neuroblasts, per hemineuromere. Previous experiments provided indications for inductive signals at ventral sites of the neuroectoderm that confer neuroblast identities. Using cell lineage analysis, molecular markers and cell transplantation, we show here that EGF receptor signalling plays an instructive role in CNS patterning and exerts differential effects on dorsoventral subpopulations of neuroblasts. The Drosophila EGF receptor (DER) is capable of cell autonomously specifiying medial and intermediate neuroblast cell fates. DER signalling appears to be most critical for proper development of intermediate neuroblasts and less important for medial neuroblasts. It is not required for lateral neuroblast lineages or for cells to adopt CNS midline cell fate. Thus, dorsoventral patterning of the CNS involves both DER-dependent and -independent regulatory pathways. Furthermore, we discuss the possibility that different phases of DER activation exist during neuroectodermal patterning with an early phase independent of midline-derived signals.
Central Nervous System, Neurons, Stem Cells, ErbB Receptors, Ectoderm, Mutation, Animals, Drosophila, Biomarkers, Body Patterning, Signal Transduction, Stem Cell Transplantation
Central Nervous System, Neurons, Stem Cells, ErbB Receptors, Ectoderm, Mutation, Animals, Drosophila, Biomarkers, Body Patterning, Signal Transduction, Stem Cell Transplantation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 46 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
