
An optimization procedure is developed for controls/structures interaction using a multiobjective formulation. A rotating composite cantilever box beam model is presented which includes piezoelectric strain actuators for vibration control. The model is implemented using the finite-element method. Multiple design objectives are efficiently combined using the Kreisselmeier-Steinhauser function approach. Actuator locations and ply stacking sequences are represented by discrete (0,1) variables while structural/control parameters such as box beam dimensions are continuous design variables. A transformation technique is used to formulate the combined continuous/discrete problem as a purely discrete problem. This allows both optimal actuator locations and structural/control parameters to be determined inside a closed loop procedure. A technique based on simulated annealing is used for optimization in conjunction with an approximate analysis procedure to reduce computational effort.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
